

Secure Network Exchange MINX: Micropayments with

Institute of Telecommunications, Warsaw University of Technology Krzysztof Szczypiorski, Aneta Zwierko, Igor Margasiński

ECOM-03 International Interdisciplinary Conference on Electronic Commerce

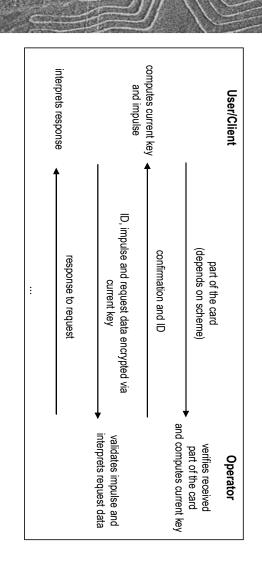
- Micropayments vs. macropayments
- Micropayments schemes
- ◆ MNX
- Electronic prepaid card vs. micropayments
- General overview
- Possible versions of scheme
- Application
- Conclusion
- Questions

- Macropayments
- User makes few but large transactions
- Widely use in e-commerce systems (shops, etc)
- Micropayments
- User makes many small transactions
- Buying web content, streaming services, etc.
- ◆ Micro vs Macro
- Frequency of macropayments is quite low
- computation connected with using strong cryptography (public key cryptosystems) and need of on-line communication between broker (bank), vendor and client is not a problem
- In micropayments frequency of transactions is quite high
- use of PKI is impossible too many computation per one transactions
- Need for an on-line communication between broker, vendor and client is problematic

ى د

Known Micropayments Schemes

- Payword & Micromint
- R. Rivest, A. Shamir (1996)
- CAFE system (ESPIRIT project)
- T. Pedersen (1994)
- NetPay
- X. Dai, J. Grundy (2002)
- Micropyments based on Probabilistic Polling
- S. Jarecki, A. Odlyzko (1998)
- Electronic Lottery Tickets
- R. Rivest (1998)
- Internet Keyed Payment System (iKP)
- R. Hauser, M. Steiener, M. Waidner, IBM (1996)


- Prepaid card is kind of micropayments scheme
- Idea based on real-life prepaid cards
- Main properties
- User buy a prepaid card from operator
- User trust operator that card is valid and will be able to use it
- Card can be used only partially
- User can utilize card in any moment
- data concerning the card User is not required to provide operator with any data apart of
- No TTP (Trusted Third Party) required

MINX – General Overview (1)

- Main advantages
- Functionality of electronic prepaid card
- Ability to perform cryptographic key distribution with micropayment process
- Cryptographic primitives
- One-way has function
- Pseudorandom bit generator
- Basic definitions
- Impulse ID
- Card is built of the following:
- secret seed x
- card's value
- number of impulses z
- function for generating impulses or secret parameters of CSPRBG

MINX - General Overview (2)

MINX - Hash Function Version

K. Szczypiorski, A.Zwierko, I. Margasiński - MINX

- Secret key and impulse are generated using one-way hash function from seed x: h(x)
- The advantages of this scheme include:
- confidentiality of communication between a user and an operator
- possibility of using services with different values/prices with one card
- no need for TTP to compute impulses prior to card usage. A user does not have to request an authorization of a card
- The disadvantages include:
- computation of impulses and keys, their validation is slower then in classical micropayments schemes
- an operator has to be trusted same as in the real world

- cryptographically secure pseudorandom number generator (CSPRBG) Instead of the hash function, a client uses
- generation and a verification of a key and an impulse take almost the same amount of time
- The advantages include:
- the same number of operations to generate key/impulse every time and to verify them
- the same as in the previous scheme
- The disadvantages are:
- generating proper parameters of CSPRBG is quite complex
- computation CSPRBG values is not very fast, and poses almost the same problems as public-key cryptosystems

9

MINX - Application

- Independent cryptosystem
- Application layer (where micropayments are provided)
- confidentiality for clients' requests or operators' responses Keys placed on pre-paid cards are utilized to provide including security of the content during the paying process
- ◆ Use with other security protocol
- Possible security protocols: SSL/TLS (Secure Sockets Layer/Transport Layer Security)
- admitted context (for example duration or data volume) is utilized to provide transaction security according to (SSL/TLS MasterKey) is extracted from a pre-paid card and In this case (i.e. SSL/TLS), the adequate session key

- distribution generators) are integrated with cryptographic key one based on one-way hash functions, the second one Both original schemes presented in this article (the first based on cryptographically secure pseudorandom bit
- users' privacy Payment for access to resources without compromising
- The usage of keys placed in pre-paid cards
- reduces costs of key management system implementation
- simplifies clients' software/hardware
- Other main advantages of the proposed schemes
- a possibility of using services with different values/prices with one card
- the absence of TTP

References

- Boly, J-P., Bosselaers, A., Cramer, R., Michelsen, R., Mjilsnes, S., Muller, F., Pedersen, T., Pfitzmann, B., de Rooij, P., Schoenmakers, B., Schunter, M., Halle, L., Waidner, M.: The ESPRIT Project CAFE. ESORICS 94, Springer-Verlag LNCS Vol. 875 (1994) 217-230
- Dai, X., Grundy, J.: Architecture of a Micro-payment System for Thinclient Web Applications Proceedings of the 2002 International Conference on Internet Computing (2002)
- ယ Dai, X., Grundy, J., Lo, B.: Comparing and contrasting micro-payment models for E-commerce systems. International Conferences of Info-tech and Info-net (ICII) (2001)
- Dierks T., Allen C.: The TLS Protocol Version 1.0. IETF RFC 2246 (1999)
- 9.09
- Hauser, R., Steiner, M., Wa 89269), IBM Research (1996) Ellis, C.: Evaluation of Micropayment Schemes. Tech Report HPL-97-14 (1997)
 Hauser, R., Steiner, M., Waidner, M.: Micro-Payments based on iKP. Research Report 2791 (#
- Jakobsson, M., Hubaux, J-P., Buttyan, L.: A Micro-Payment Scheme Encouraging Collaboration in Multi-Hop Cellular Networks. Financial Cryptography'03 (2003)
- ∞ Jarecki, S., Odłyżko, A.: An Efficient Micropayment System Based on Probabilistic Polling. Financial Cryptography '97, Springer-Verlag LNCS Vol. 1318 (1998) 173-191 Jarecki, S.,
- Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Inc

Rivest, R.: Micropayments Revisited. CT-RSA 2002, Springer-Verlag LNCS Vol. 2271

0

- Micali, S., Rives (2002) 149-163 Pedersen, T.: Electronic Payments of Small Amounts. Technical Report IDAMI PB-495 (1995)
- 12
- Rivest, R.: Electronic Lottery Tickets as Micropayments. Financial Cryptography '97, Springer-Verlag LNCS Vol. 1318 (1998) 307-314

 Rivest, R., Shamir, A.: PayWord and MicroMint: Two simple micropayment schemes. Proceedings of 1996 International Workshop on Security Protocols, Springer-Verlag LNCS Vol. 1189 (1997) 69-87